

 1

A CONCURRENCY CONTROL MODEL

FOR

MULTILEVEL SECURE OBJECT-ORIENTED DATABASES

ABSTRACT

 Much attention is being directed toward the development of secure database systems.

Such systems are critical for both military as well as sensitive commercial applications. The

majority of research in security and multi level secure database management systems

(MLS/DBMS) are focused on relational systems. However with the emergence of new and

complex applications of the 1990's, research in object oriented security is gaining more

prominence [Thur90], [Keef89]. In this paper, we address the issues of transaction management

for multilevel Secure Object-Oriented Database systems. We begin by introducing two new

security policies specifically designed for OODB's. Later we identify the existence of covert

William Perrizo1, Hossein Hakimzadeh2, Ramzi Haraty3, B. Panda4

1Computer Science Department

North Dakota State University

Fargo, ND 58105

perrizo@plains.nodak.edu - (701) 237-8562

2Math. & Computer Science Dept.

Indiana University at South Bend

South Bend, IN 46634

hossein@natasha.iusb.indiana.edu - (219) 237-4517

3Computer Science Department

Moorhead State University

Moorhead, MN 56563

haraty@mhd1.moorhead.msus.edu

 2

channels in the traditional conflict-serializable concurrency control schedulers and provide an

alternative transaction processing algorithm which ensures both correctness and security. We

conclude with the proof of correctness.

Key Words: Object-Oriented Databases, Computer Security, Concurrency Control, Version

Control, Commutativity, MLS/OODB.

INTRODUCTION

 In order to enhance performance in a multilevel secure database environment, database

applications must be allowed to interleave their execution. However concurrent execution gone

unsupervised can lead to erroneous results and inconsistent database state. A database

management system prevents such inconsistencies by enforcing a concurrency control strategy,

which enhances performance and maintains correctness. In other words, the concurrency control

strategy will only produce serializable schedules. Such schedulers will produce executions which

are equivalent to some serial order. A number of methods such as time stamp ordering (TO)

[Reed83] [Bern80], locking (2PL) [Eswa76] [Gray78b] [Bern87], serialization graph testing

(SGT) [Bada79] [Schl78], tree locking (TL) [Silb80] [Baye77] [Bern87], optimistic certifiers

[Kung81] [Robi82] and ROLL [Perr91] [Haki92b] have been proposed. Many of the existing

relational and object-oriented database systems use these methods with varied levels of

performance. In addition to the above methods a number of alternative concurrency control

strategies have been proposed which seek to better accommodate object oriented applications.

The focus of this paper is to point out the security breaches in existing concurrency control

algorithms and develop a high performance concurrency control algorithm which is both, secure

 3

and correct.

OBJECT ORIENTED MODEL

 An object is meant to represent a concept in the real world. Each object belongs (is an

instance of) a single class. A class is viewed as having two parts, a structure and a behavior.

The structure is the instance variables and the methods of the class define its behavior. Classes

are encapsulated entities, and the public methods for each class provide the user interface to that

class, hiding the implementation details. Classes can be either "base" or "derived". Derived

classes inherit from one or more base classes. The set of classes in OODB are organized into a

class hierarchy and the schema of each class includes the schema of all of its superclasses.

OBJECT ORIENTED DATABASE SYSTEMS

 An object-oriented database is a system which provides all the functionalities of a

traditional database such as persistence, integrity, transaction management, concurrency control,

recovery, query processing and security, as well as object-oriented features such as data

abstraction, encapsulation, inheritance, object identity, intelligence, versioning and better

performance for complex applications.[Haki92c]

 Data abstraction provides the necessary facilities for incorporating more complex data

types such as images, voice segments, vectors, etc.. Object Oriented Data Model provides a

better, more powerful, and often more efficient data model. Object oriented data modeling is

closer to real world modeling and therefore, it is more intuitive. Information is modeled in the

form of classes and objects which capture the structure and behavior of real world entities. OODB

 4

systems maintain unique Object Identifiers (OID) for every object. Therefore, eliminating the

need for arbitrarily primary keys. This feature solves many integrity issues and speeds up the

database access. The access speed is improved due to the reduction of expensive joins on

attributes. Encapsulation couples the data and its associated operations in a atomic unit. This

practice has the benefit of hiding the details of the data from the user. Further more, the

implementation of the operations (methods) may be modified without invalidating the applications

which use them. OODB systems are more intelligent than traditional databases. This is mainly

due to encapsulation which gives the database the ability to reason about its domain, integrity,

validation and consistency. This awareness in part of the OODB systems triggers appropriate

methods to deal with any possible problems. Inheritance encourages data and code reusability

and incremental development. Organizing generalized classes at the top of the hierarchy and

deriving specialized classes from them allows us to incrementally augment/extend the database

functionality. Versioning provides the ability to maintain multiple versions of each object

allowing design teams to speculate with what if scenarios. Better performance, is often achieved

by applications which need to display complex objects. Such applications can perform two to

three orders of magnitude better in an object oriented environment[Edel91]. This is due to the

fact that, it is much easier and faster to follow pointers than to join multiple tables.

BACKGROUND ON OBJECT ORIENTED CONCURRENCY CONTROL

 In the past few years, numerous extensions to existing traditional concurrency control

algorithms have been proposed in the context of object oriented database systems. The following

is a short review of each method.

 5

 Object and Class Level Locking [Barg91] [Hugh91] or otherwise known as multi-

granularity locking was first described in the framework of tree locking. Variations of this

method is now applied to OODB's. Non-Serializable Approaches to Concurrency Control

[Hugh91] relax serializability, however they certain constraints on the operation and behavior of

the transactions. Examples of such methods are linearizability, commit-serializability, nested-

transactions and Sagas. Linearizability requires transactions to be reduced to a single operation

on a single object [Hugh91]. This implies that complex transactions must be decomposed into a

number of smaller transactions. Once the transaction is decomposed, the smaller transactions can

execute concurrently. Commit Serializability (CS) [Hugh91] requires transactions to commit in

a serializable order, however, these transactions need not directly correspond to the initial

transactions. The proposal is to split the transaction in to (read-set and write-set) and form new

transactions. Nested Transactions [Reed78] [Hugh91] [Gray93] allows a transaction to spawn

concurrent child transactions, however the interaction between the sub-transactions are serialized

by the parent. The parent transaction governs all of its child sub-transactions and no child

transaction can commit until its parent has committed. Sagas [Barg91] [Garc87] was introduced

to solve long transactions and is very similar to nested transactions (transactions are broken down

to sub-transactions). Sagas is not a serializable algorithm and has the possibility of cascading

aborts. The notion of roll-back, is replaced by compensating transactions (functions) which are

supplied by the user. The compensating transaction will semantically undo the original

transaction. Version Control & CC [Agra89c] [Bjor89] [Barg91] [Scio91] are algorithms which

combine version control with one or more traditional concurrency control algorithms such as

BTO, Optimistic, or 2PL in order to enhance concurrency. Traditionally, multiple versions were

 6

used to allow read only transactions, fast and consistent access to the database. Read-only

transaction that conflict with other transaction would simply read the previous version therefore,

allowing more concurrency. Version control algorithms are also popular with current object-

oriented database applications. Transactions in such applications are often long-lived and

therefore, the potential for conflicts become greater. Versioning provides an alternative to

restarting. Commutativity & CC [Weih88] [Naka92] are semantically driven algorithms which

ensure serializability of transactions by using conflict relations based on the commutativity of

operations. Two operations are required to conflict only if they do not commute therefore,

concurrent transactions can access and update the same object as long as their operations

commute.

SECURITY RELATED ISSUES

 There are two standard types of security in database systems: discretionary and mandatory

security. Discretionary security restricts access to data items at the discretion of the owner. Most

commercial database management systems employ some form of discretionary security by

controlling access privileges and modes of users to data [Grif76]. Discretionary security is not

adequate in a multilevel secure environment however, because it does not prevent Trojan horse

attacks and provides a low level of assurance. Mandatory security restricts access to data items to

cleared database users. It is widely employed in military applications and provides a high level of

assurance.

 Numerous commercial and military applications require a MLS/OODB. In an

MLS/OODB, database users are assigned classifications levels, and data items are assigned

 7

sensitivity levels. It is the responsibility of the MLS/OODB to ensure that users can access only

those data items for which they have been granted a clearance.

 The goal of this paper is to address the issue of transaction management in a MLS/OODB.

 We will identify a set of security constraints and later describe a transaction processing model

which interacts with these security constraints in order to achieve a high performance

MLS/OODB.

THE SECURITY MODEL FOR OODBs

 We use the standard military security approach which consists of two components. A set

of security classes and a set of non-hierarchical compartments. The security classes are totally

ordered from the lowest to the highest as follows: unclassified << confidential << secret

 << top secret. Within each security class there can be zero or more compartments (for

example, conventional, chemical, and nuclear).

 We say that a security class, S1, is dominated by another class, S2, if S2 is

hierarchically higher than S1 and contains all of its compartments.

 We refer to users, or the processes that execute on behalf of users, as subjects. Users

are trusted, but processes are not. Objects, on the other hand, correspond to data items. The

Bell-LaPadula model defines two security policies commonly accepted in a system that enforces

multilevel security [Bell76]:

A. The Simple Security Policy: A subject is allowed read access to an object if the subjects

classification level is identical to or higher than that of the object's sensitivity level.

B. The *-Policy: A subject is allowed write access to an object if the subject's

classification level is identical to or lower than that of the object's sensitivity level.

 8

These policies, although important, are not complete for an object oriented setting. We propose

two new security constraints which can be summarized in the following policies:

C. The Class Security Policy: The sensitivity level of a class must be identical to or lower

than the sensitivity level of its subclasses and identical to the subjects classification.

D. The Instances Security Policy: The sensitivity level of all instances (objects) of a class

must be identical to or higher than that of its class.

 These polices guarantee that proper access to objects will not be violated directly.

However, they are insufficient to guarantee indirect violations through covert channels. Covert

channels are channels that are not intended to route information through, but nevertheless they do

[TCSEC85]. There are three main types of covert channels: covert storage channels and covert

timing channels and signaling channels.

 Covert storage channels can disclose implicit information from high to low subjects

through manipulation of a physical object. This manipulation can be in the form of creation or

destruction of a given persistent object.

 Covert timing channels can covertly send information from high to low subjects by

modulating an observable delay in the accessing of a common resource. A system that is free

from covert channels is called Covert Channel Secure (CCS). This is the strongest form of

security [Keef90].

 A Signaling Channel is a means of information flow inherent in the basic algorithm or

protocol, and hence appears in every implementation. Note that a covert channel is a property of

a specific implementation, and not the general algorithm or protocol [Jajo92].

 9

OBJECT ORIENTED DATABASE TRANSACTION MODEL

 Our database model consist of the four components, subjects, objects, classes, methods

and instance variables. Similar to relational modal, subjects (users) are given a security level and

object (data items) are given a sensitivity level. In addition to subjects and objects, our model

includes the notion of a class and its methods.

 - Subject (s-id, Authorization)

 - Object (o-id, Authorization)

 - Class (c-id, Authorization)

 - Method (Same as the authorization of the objects or the subject which ever is higher)

 - Instance Variables(same as object's authorization)

 Our transaction model consists of three components (M, C, O) where M stands for

Methods, C stands for Classes and O stands for Objects. A transaction is described as the

invocation of a set of one or more methods. Each method acting on a given object of a given

class.

 Method(Class, Object)

 For the purpose of formalizing concurrency control, methods are ultimately classified as

read, or write operations. Traditional,

concurrency control algorithms based on

"conflict serializability" disallow conflicting

operations on the same data item by different

transactions[Kort90]. The compatibility matrix

for read and write operations is as

follows:

 read

write

read

 N

 Y

write

 Y

 Y

 10

 Note that the only operations that do not conflict are two reads. It is clearly evident that

conflict serializability introduces a covert channel in a MLS/OODB environment (due to waiting

by local transactions for resources held by read-down transactions). In order to eliminate covert

channels we propose a new commutativity matrix which distinguishes between the security

classification (i.e. unclassified, classified, secret, top-secret) of operations. In other words, a read

operation is defined as either read-local or read-down. If the classification of the subject and the

sensitivity of the object match, the operation is considered as a read-local however, if the

classification of the subject is higher than the sensitivity of the object, then the operation is

considered as a read-down. The matrix below represent our commutativity protocol.

Commutativity Matrix for Resolving Covert Channels

 read-local write-local read-down

read-local n y n

write-local y y n if(r-d < w-l)

read-down n n if(r-d < w) n

n = no conflict

y = conflict

 Note that the order of operation in the above matrix makes a difference such that (read-

down followed by a write-local) and (write-local followed by a read-down) is not symmetric.

This notion is called forward vs. backward commutativity and is described in [Weih88].

 11

ELIMINATING COVERT CHANNELS

 In order to eliminate the covert channels we must come up with an algorithm which

eliminates the flow of information (of any kind) from higher to lower containers. This means that

no operations of a lower classification can be directly effected by an operation from a higher

classification. For example a w-local operation must never wait for a lock held by a r-down

operation. This is a subtle yet extremely important issue since if a local transaction ever has to

wait for a r-down transaction (an operation from higher container) we have established a direct

and obvious covert channel. This allows the subject invoking a (w-local) to make an inference

based on the lock held by the (r-down) operation (depending upon the amount of time it has to

wait). Granted that the bandwidth and the accuracy of such covert channels may be low however,

it is still not tolerated by the database security community.

In the following sections we will describe how ROLL concurrency control [Perr91] can be

complemented by a simple yet effective versioning scheme to accommodate the security

requirements of a MLS/OODBMS.

ORIGINAL ROLL CONCURRENCY CONTROL

 12

 ROLL concurrency control object is described in [Perr91] and implemented in [Haki92b].

 Roll is a pessimistic, non-blocking, deadlock and restart free concurrency control algorithm

developed at North Dakota State University. The basic idea is to create an encapsulated

concurrency control object which allows transaction managers to police and monitor their own

concurrency. The ROLL object is simply a linked list of Request Vectors (one RV per

transaction). Each bit in the vector

corresponds to a lockable granule in the

database. A 1 bit represents a lock request,

and a 0 bit indicates, no lock is requested.

The ROLL object also provides 3 public

methods. The methods are POST, CHECK,

and RELEASE.

Class ROLL {

 unsigned int T_id;

 ROLL *Up_link;

 Vector_type *Roll_vector;

 Install(....);

 Clean(....);

 Free(....);

 Public:

 ROLL(T_id, vector_size,);

 Post(....);

 Check(.....);

 Release(.....);

}

 Informally, the algorithm works as follows. Transaction T1 composes a RV and POSTs it

into the ROLL object. Immediately after POSTing, T1 can invoke its CHECK operations. (Note:

there is no scheduler) The CHECK operation simply checks the request vectors ahead of T1 and

 13

returns an access vector (AV) which tells T1 specifically which one of the data items are available.

 At this point each transaction will acquire all available items that it has requested and only waits

for those that are in conflict (No unnecessary waiting). Due to the sequential nature of the

POSTing process, waits are never circular therefore, there are no deadlocks. Based on linear or

exponential backoff, T1 continues to perform periodic CHECK operations until all of its lock

requests are granted.

 Finally depending upon the concurrency control and recovery policy adopted by the

system the RELEASE operation is called to unlock the data items. As one can see, the scheduler

is replaced with a series of concurrently executing transaction managers. The POST operation is

the only operation which requires atomicity. The other operations such as CHECK and

RELEASE can be executed concurrently. Detailed information regarding advantages and

disadvantages of ROLL concurrency control can be found in [Perr91].

 The proposed multilevel model is based on two layers. The first layer is the TCB and

the second layer is comprised of local Request Order Linked List (LROLL) driver objects at each

 container [Perr91]. The TCB authenticates users and determines whether returned data is to be

viewed by the querying users or not. The local ROLL objects provide correctness assurance

using global serializability as the correctness criterion. There is one ROLL object in the TCB,

the Global ROLL and a separate ROLL object at each container, the Local ROLLs.

COMBINING MULTI-VERSIONING AND ROLL CONCURRENCY CONTROL

 The basic objective in combining multi-versioning and ROLL concurrency control is to

eliminate any covert or signaling channels which may exist in conflict serializable algorithms and

 14

provide a highly concurrent and secure algorithm. In multi-version ROLL local read or write

operations will never have to wait for any operations initiated from a higher level container.

In the following section we will describe the method by which the ROLL algorithm is modified to

accommodate multi-level security constraints under the kernelized architecture.

 Transactions are categorized as local (intra-security-level) or global (inter-security-level).

 Intra-level transactions can be read-local and/or write-local.

 Inter-level transactions can be any

combination of read-local, write-local and

read-down.

POST Protocol

 1) Inter-security-level transactions must

first POST to a trusted GROLL

structure. Followed by one or more

POSTs to various LROLL

structures. At the GROLL level,

transactions specify the containers

they are interested in, by creating a

request vector and placing a 1 bit for

the appropriate container. (i.e. RV = 0101, the transaction is requiring access to

container 2 and 4)

 2) Intra-security-level transactions must only POST to their local LROLL structure.

 3) Once the POSTing is completed the serialization partial order is established.

CHECK Protocol

 Once the inter-security-level transaction POSTs at the GROLL, it must perform a CHECK

operation. The CHECK at the GROLL will return an access vector (AV) indicating which

containers (if any) are available for further POSTing.

 1) At the GROLL level, the conventional POST, CHECK and RELEASE described earlier is

 15

observed.

 2) At the LROLL level, the CHECK process is modified to eliminate the possibility of any

covert timing or signaling channels.

 3) The CHECK process is modified such that local operations will never have to wait for a

global (i.e. read-down) operation.

This is implemented as follows:

 When a CHECK by a local transaction is initiated the CHECK method will return an

Access Vector (AV) indicating which if any of the items are available for use by the transaction.

The CHECK process is designed to distinguish between local and non-local Request Vectors

(RVs) and if there exists a conflicting global transaction, the versioning mechanism is invoked.

The versioning mechanism will check the currency (if the data item is current or old) of the data

item, if the value is current, the local transaction is allowed to write the data item and the system

will manage the version control.

If the result of the check operation reveals the existence of a conflict between two local

transactions, the conventional CHECK operation is performed.

RELEASE Protocol

 In a multi-version environment, the RELEASE operation is modified to accommodate

both local and global transaction.

 1) The RELEASE at the GROLL may be done in a container at a time basis. In other words

after the transaction POSTs its appropriate LROLL in the desired containers, it may

release the bit for that container, allowing others to proceed.

 2) The RELEASE at the LROLL by a local operation (r-local, w-local) is done as an strict,

and atomic operation. This behavior will ensures recoverability.

 16

 3) The RELEASE by a read-down operation may be invoked discarding the old version of

the object.

PROOF OF CORRECTNESS

THEOREM 1: The ROLL concurrency control object produces only serializable executions:

PROOF: A transaction may not access an object until all preceding, conflicting transactions in the

ROLL have accessed and released it. Every method performed by a transactions which conflicts

with a younger transaction methods (i.e. has POSTed after) must follow the methods of that

transaction. Thus every execution partial order is compatible with the POSTing order which is

serial.

Notation:

 A version order, for some data item x in history H, is a total order of versions of x in H

and is denoted by <vo.

 ri[xj] represents that transaction Ti has read a data item written by transaction Tj.

 wk[xk] represents that the version k of x is written by a (committed) transaction Tk.

 C(H) denotes the history over the set of committed transactions in H.

Definition:

 Given a Multi-Version (MV) history, H, and a version order, <vo (the union of the

version orders for all data items), the Multi-Version serialization graph for H, MVSG(H),

is a directed graph whose nodes are the committed transactions in H and there are two

types of edges:

 a) Ti  Tj (i  j) whenever for some x, Tj reads x from Ti, i.e., rj[xi] is in C(H).

 b) For each rk[xj] and wi[xi] in C(H) where i,j,k are distinct, if xi <vo xj then the edge Ti

 Tj is in MVSG(H), otherwise the edge Tk Ti is in MVSG(H).

 17

Theorem:

 A MV history H is one-copy serializable (1SR) iff there exists a version order, <vo, such

that MVSG(H) is acyclic [Bern87].

The following theorem establishes the correctness of our algorithm.

Theorem:

 Let H be any Multi-Version history produced by our algorithm. Then the MVSG(H) is

acyclic and hence H is 1SR.

Proof:

 To prove that MVSG(H) is acyclic, we first show that every edge in MVSG(H) follows

the post order of transactions. That is, if Ti  Tj is in MVSG(H), then PO(Ti) < PO(Tj)

where PO(Ti) and PO(Tj) denote the post order of transactions Ti and Tj respectively.

The following properties of our algorithm would help in establishing the proof.

 1) All global transactions must POST in the GROLL and LROLLs in order to access

any data items.

 2) The POST order is serial.

 3) No transaction can access any data item until a conflicting transaction having less

POST order releases all the bits in its request vector in LROLL.

 4) Transactions RELEASE the bits in request vector during commit time only.

Now, let us consider an edge Ti  Tj in MVSG(H) for the operation rj[xi] in H for some data

item x. By properties 3 and 4 above, Ti commits before Tj reads x. Thus PO(Ti) < PO(Tj).

Next, let us consider a version order edge in MVSG(H) due to two different versions, xi and xk of

x. If the operation rj[xi] is in H, then the edges

 a) Tk  Ti  Tj is in MVSG(H) if xk <vo xi

 18

 b) Ti  Tj  Tk is in MVSG(H) if xi <vo xk

We need to show that in case a, PO(Tk) < PO(Ti) < PO(Tj), and in case b, PO(Ti) < PO(Tj) <

PO(Tk).

In case a, since Ti can write x, only after Tk RELEASEs all its bits, obviously, PO(Tk) < PO(Ti)

< PO(Tj). In case b, let us assume that PO(Ti) < PO(Tk) < PO(Tj). But since Ti, Tj, and Tk

are conflicting transactions, the commit order of Ti, Tj, and Tk is the same as their post order.

But then as per our algorithm, Tj would read the highest available version, which in this case

would be xk, not xi, of x.

This contradicts our assumption that rj[xi] is in H. Thus, we have proven that every edge in

MVSG(H) follows the POST order of transactions that represent the nodes.

Since a transaction POSTs only once in an LROLL, and the POST partial orders across

containers is the same for the same set of transactions (this is maintained by the GROLL), there

would never be a cycle in the post order. Therefore, there would never be a cycle in the

MVSG(H). This completes the proof.

CONCLUSION

 We have provided two new security policies, specifically developed for OODB's. These

policies ensure the security constraints of the Bell-LaPadula Model. We have also identified the

existence of covert channels in the traditional concurrency control algorithms, and provided an

alternative transaction processing algorithm which ensures both correctness and security. This

was achieved using the ROLL concurrency control combined with a modified version control

strategy.

 19

REFERENCES

[Atki92] Atkins, M. S., Coady M. Y., "Adaptable Concurrency Control for Atomic Data

Types", ACM Transactions on Computer Systems, Vol. 10, No. 3, Aug. 1992.

(pp 190-225)

[Badr92] Badrinath, B. R., Ramamritham, K., "Semantics-Based Concurrency Control:

Beyond Commutativity", ACM Trans. on Database Systems, Vol. 17, No. 1,

March 1992.

[Barg91] Barghouti, N. S., Kaiser, G. E., "Concurrency Control in Advanced Database

Applications", ACM Computing Surveys, Vol. 23, No. 3, Sept. 1991.

[Bell76] Bell D.E., Lapadula, L.J., "Secure Computer System: Unified Exposition and

Multics Interpretation" Tech. Report MTR-2997, Mitre Corp., Bedford, Mass.,

March 1976, Available as NTIS AD A023588.

[Bern80] Bernstein, P. A., Goodman, N., "Timestamp-based Algorithm for Concurrency

Control in Distributed Database Systems", Proceedings of the International

Conference on Very Large Databases, 1980. pp 285-300.

[Bern87] Bernstein, P. A., Hadzilacos, V., Goodman, N., "Concurrency Control and

Recovery in Database Systems", Addison Wesley, 1987.

[Bjor89] Bjornerstedt a., Hulten C., "Version Control in an Object-Oriented Architecture,

in Object-Oriented concepts, Databases and Applications", Addison-Wesley,

Reading, Mass., 1989, pp 451-485

[Eswa76] Eswaran, K. P., Gray, J.N. Lorie, R.A., Traiger, I. L., "The Notions of

Consistency and Predicate Locks in a Database System", Communications of the

ACM, Nov. 1976. pp 624-633

[Garc87] Garcia-Molina, H, Salem, K., "SAGAS", Proc. of the ACM SIGMOD, Annual

Conf. (May), ACM Press, pp 249-259, 1987.

[Grif76] Griffiths P. P., Wade B.W., "An Authorization Mechanism for Relational

Database Systems", ACM transactions on Databases Systems, Vol. 1, No. 3,

1976. pp 242-255.

[Gray78b] Gray J. N., "Notes on Database Operating Systems: An Advanced Course",

Editors: R. Bayer, R. M. Graham and G. Seegmuller, Springer-Verlag, New

 20

York, 1978.

[Gray93] Gray J., Reuter A., "Transaction Processing: Concepts and Techniques", Morgan

Kaugmann Publishers, Inc. 1993.

[Haki92b] Hakimzadeh, H., "ROLL Concurrency Control", Computer Science Department,

Technical report number: NDSU-TR-1992-03. North Dakota State University,

Fargo, ND.

[Haki92c] Hakimzadeh, H., "Object Orientation Primer", Department of Computer Science,

Technical Report. (NDSU-CSOR-TR-1992-20). North Dakota State University,

Fargo.

[Haki92d] Hakimzadeh, H., "Object Centered Concurrency Control for Object Orientation

Databases", Ph.D. in progress, Department of Computer Science, North Dakota

State University, Fargo, ND.

[Haki93] Hakimzadeh, H., Perrizo, W., "Fine Granularity Locking for Object-Oriented

Databases", ISCA conference proceedings, March 10-12, Washington D.C.

(March 93)

[Hugh91] Hughes, J. G., "Object Oriented Databases", Prentice Hall International Series In

Computer Science., 1991.

[Jajo92] Jajodia, S., Atluri, V., "Alternative Correctness Criteria for Concurrent Execution

of Transactions in Multilevel Secure Databases", Proceedings of the 1992 IEEE

symposium on Research in Security and Privacy, page 216-224, Oakland, CA,

May 4-6, 1992.

[Keef89] Keefe, T. F., Tsai, W. T., Thuraisingham, M. B., "SODA: A Secure Object-

Oriented Database System", Computers and Security, Vol. 8, No. 6, Oct. 89, Pg

517-533.

[Kers84] Kersten, M., Tebra, H., "Application of an Optimistic Concurrency Control

Method", Software Practice and Experience 14, Feb. 1984.

[Kort90] Korth, H.F., Levy, E., Silberchatz, A., "A Formal Approach to Recovery by

Compensating Transactions.", Proceedings of the VLDB-90, 1990, pp. 95-106.

[McLe90] McLean J., "The Specification and Modeling of Computer Security", IEEE

Computer, Jan. 1990.

[Naka92] Nakajima, T., "Commutativity-Based Concurrency Control and Recovery for

 21

Multiversion Objects", Pre-Proceedings of the International Workshop on

Distributed Object Management. Edited by M. T. Ozsu, U. Dayal, P. Valduriez,

August 18-21, 1992, Edmonton, Canada. 1992. pp. 101-119.

[Perr91a] Perrizo, W., "A Concurrency Control Object", Proc. of the IEEE Conf. on Data

Engineering, April, 1991, Kobe, Japan.

[Perr91b] Perrizo, W., Rajkumar. J., Ram Prabhu, "HYDRO: A Heterogeneous Distributed

Database System", Proc. of the ACM SIGMOD, 1991.

[Reed78] Reed, R., "Naming and Synchronization in a Decentralized Computer System",

Ph.D. Dissertation, MIT Laboratory of Computer Science, MIT Tech. Report.

1978.

[Schl78] Schlageter, G., "Process Synchronization in Database Systems. ACM Trans. on

Database Systems, pp 248-271, Sept. 1978.

[Scio91] Sciore, E., "Using Annotations to Support Multiple Kinds of Versioning in Object-

Oriented Database Systems", ACM Trans. on Database Systems,Vol. 16, No. 3,

Sept. 1991. pp 417-438

[Skar89] Skarra, A. H., Zdonik S. B., "Concurrency Control and Object-Oriented

Databases", Edited by Kim, W. Lochovsky F. H., "Object-Oriented Concepts,

Databases and Applications", ACM Press, Addison-Wesley Publishing Company.

 pp 395-419.

[TCSEC85] DOD, Trusted Computer Systems Evaluation Criteria. National Computer

Security Center. 1985.

[Thur90] Thuraisingham, M.B., "Security in Object-Oriented Database Systems", Journal of

Object-Oriented Programming, Vol 2., No. 6, Mar/Apr 1990.

[Weih88] Weihl, W. E., "Commutativity-Based Concurrency Control for Abstract Data

Types", IEEE Trans. on Computers, Dec. 1988.

[Weih89] Weihl, W. E., "The Impact of Recovery on Concurrency Control", Proceedings of

the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principals of

Database Systems, Philadelphia, Pennsylvania, March 1989.

